The Best 5 Cryptocurrency Exchange Software 2020 by ...

I o T A S uP p O R t

Support for all your IOTA (Cryptocurrency) related problems. For hatred of pending transactions, to advanced hatred of API, and volleyball.
[link]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Crypto Banking Wars: Can BlockFi & Celsius Disrupt Banking?

Crypto Banking Wars: Can BlockFi & Celsius Disrupt Banking?
These crypto lending & borrowing services found early traction. Are they capable of bundling more financial services and winning the broader consumer finance market?
https://reddit.com/link/icps9l/video/98kl1y596zh51/player
This is the third part of Crypto Banking Wars — a new series that examines what crypto-native company is most likely to become the bank of the future. Who is best positioned to reach mainstream adoption in consumer finance?
While crypto allows the world to get rid of banks, a bank will still very much be necessary for this very powerful technology to reach the masses. As we laid out in our previous series, Crypto-Powered, we believe a crypto-native company will ultimately become the bank of the future. We’re confident Genesis Block will have a seat at that table, but we aren’t the only game in town.
In the first post of this series, we did an analysis of big crypto exchanges like Coinbase & Binance. In our second episode, we looked at the world of non-custodial wallets.
Today we’re analyzing crypto lending & borrowing services. The Earn and Borrow use-case covers a lot of what traditional banks deliver today. This category of companies is a threat worth analyzing. As we look at this market, we’ll mostly be focused on custodial, centralized products like BlockFi, Nexo, and Celsius.
Many of these companies found early traction among crypto users. Are they capable of bundling more financial services and winning the broader consumer finance market? Let’s find out.

Institutional Borrowers

Because speculation and trading remains one of the most popular use-cases of crypto, a new crypto sub-industry around credit has emerged. Much of the borrowing demand has been driven by institutional needs.
For example, a Bitcoin mining company might need to borrow fiat to pay for operational costs (salaries, electricity). Or a crypto company might need to borrow USD to pay for engineering salaries. Or a crypto hedge fund needs to borrow for leverage or to take a specific market position. While all of these companies have sufficient crypto to cover the costs, they might not want to sell it — either for tax or speculative reasons (they may believe these crypto assets will appreciate, as with most in the industry).
Instead of selling their crypto, these companies can use their crypto as collateral for loans. For example, they can provide $1.5M in Bitcoin as collateral, and borrow $1M. Given the collateralization happening, the underwriting process becomes straightforward. Companies all around the world can participate — language and cultural barriers are removed.

https://preview.redd.it/z9pby83d6zh51.png?width=600&format=png&auto=webp&s=54bf425215c3ed6d5ff0ca7dbe571e735b994613
The leader (and one of our partners) in this space is Genesis Capital. While they are always the counterparty for both lenders and borrowers, they are effectively a broker. They are at the center of the institutional crypto lending & borrowing markets. Their total active loans as of March 2020 was $649M. That number shot up to $1.42B in active loans as of June 2020. The growth of this entire market segment is impressive and it’s what is driving this opportunity for consumers downstream.

Consumer Products

While most of the borrowing demand comes from institutional players, there is a growing desire from consumers to participate on the lend/supply side of the market. Crypto consumers would love to be able to deposit their assets with a service and watch it grow. Why let crypto assets sit on an exchange or in cold storage when it can be earning interest?
A number of consumer-facing products have emerged in the last few years to make this happen. While they also allow users to borrow (always with collateral), most of the consumer attraction is around growing their crypto, even while they sleep. Earning interest. These products usually partner with institutional players like Genesis Capital to match the deposits with borrowing demand. And it’s exactly part of our strategy as well, beyond leveraging DeFi (decentralized finance protocols).
A few of the most popular consumer services in this category include BlockFi, Nexo, and Celsius.

https://preview.redd.it/vptig5mg6zh51.png?width=1051&format=png&auto=webp&s=b5fdc241cb9b6f5b495173667619f8d2c93371ca

BlockFi

BlockFi (Crunchbase) is the leader in this category (at least in the West). They are well-capitalized. In August 2019, they raised $18.3M in their Series A. In Feb 2020, they raised $30M in their Series B. In that same time period, they went from $250M in assets under management to $650M. In a recent blog post, they announced that they saw a 100% revenue increase in Q2 and that they were on track to do $50M in revenue this year. Their growth is impressive.
BlockFi did not do an ICO, unlike Celsius, Nexo, Salt, and Cred. BlockFi has a lot of institutional backing so it is perceived as the most reputable in the space. BlockFi started with borrowing — allowing users to leverage their crypto as collateral and taking out a loan against it. They later got into Earning — allowing users to deposit assets and earn interest on it. They recently expanded their service to “exchange” functionality and say they are coming out with a credit card later this year.

https://preview.redd.it/byv2tbui6zh51.png?width=800&format=png&auto=webp&s=bac080dcfc85e89574c30dfb396db0b537d46706
Security Woes
It’s incredible that BlockFi has been able to see such strong growth despite their numerous product and security woes. A few months ago, their systems were compromised. A hacker was able to access confidential data, such as names, dates of birth, postal addresses, and activity histories. While no funds were lost, this was a massive embarrassment and caused reputational damage.

https://preview.redd.it/lwmxbz5l6zh51.png?width=606&format=png&auto=webp&s=ebd8e6e5c31c56da055824254b35b218b49f80e0
Unrelated to that massive security breach and earlier in the year, a user discovered a major bug that allowed him to send the same funds to himself over and over again, ultimately accumulating more than a million dollars in his BlockFi account. BlockFi fortunately caught him just before withdrawal.
Poor Product Execution
Beyond their poor security — which they are now trying to get serious about — their products are notoriously buggy and hard-to-use. I borrowed from them a year ago and used their interest account product until very recently. I have first-hand experience of how painful it is. But don’t take my word for it… here are just a few tweets from customers just recently.

https://preview.redd.it/wcqu3icn6zh51.png?width=1055&format=png&auto=webp&s=870e2f06a6ec377a87e5d6d1f24579a901de66b5
For a while, their interest-earning product had a completely different authentication system than their loan product (users had two sets of usernames/passwords). Many people have had issues with withdrawals. The app is constantly logging people out, blank screens, ugly error messages. Emails with verification codes are sometimes delayed by hours (or days). I do wonder if their entire app has been outsourced. The sloppiness shines through.
Not only is their product buggy and UX confusing, but their branding & design is quite weak. To the left is a t-shirt they once sent me. It looks like they just found a bunch of quirky fonts, added their name, and slapped it on a t-shirt.

https://preview.redd.it/mi6yeppp6zh51.png?width=600&format=png&auto=webp&s=fd4cd8201ad0d5bc667498096388377895b72953
Culture
To the innocent bystander, many of these issues seem totally fixable. They could hire an amazing design agency to completely revamp their product or brand. They could hire a mercenary group of engineers to fix their bugs, etc. While it could stop the bleeding for a time, it may not solve the underlying issues. Years of sloppy product execution represents something much more destructive. It represents a top-down mentality that shipping anything other than excellence is okay: product experience doesn’t matter; design doesn’t matter; craftsmanship doesn’t matter; strong execution doesn’t matter; precision doesn’t matter. That’s very different from our culture at Genesis Block.
This cancerous mentality rarely stays contained within product & engineering — this leaks to all parts of the organization. No design agency or consulting firm will fix some of the pernicious values of a company’s soul. These are deeper issues that only leadership can course-correct.
If BlockFi’s sloppiness were due to constant experimentation, iteration, shipping, or some “move fast and break things” hacker culture… like Binance… I would probably cut them more slack. But there is zero evidence of that. “Move fast and break things” is always scary when dealing with financial products. But in BlockFi’s case, when it’s more like “move slow and break things,” they are really playing with fire. Next time a massive security breach occurs, like what happened earlier this year, they may not be so lucky.
Institutional Focus
Based on who is on their team, their poor product execution shouldn’t be a surprise. Their team comes mostly from Wall Street, not the blockchain community (where our roots are). Most of BlockFi’s blockchain/crypto integration is very superficial. They take crypto assets as deposits, but they aren’t leveraging any of the exciting, low-level DeFi protocols like we are.
While their Wall Street heritage isn’t doing them any favors on the product/tech side, it’s served them very well on winning institutional clients. This is perhaps their greatest strength. BlockFi has a strong institutional business. They recently brought on Three Arrows Capital as a strategic investor — a crypto hedge fund who does a lot of borrowing. In that announcement, BlockFi’s founder said that bringing them on “aligns well with our focus on international expansion of our institutional services offering.” They also recently brought someone on who will lead business development in Asia among institutional clients.
BlockFi Wrap Up
There are certainly BlockFi features that overlap with Genesis Block’s offering. It’s possible that they are angling to become the bank of the future. However, they simply have not proven they are capable of designing, building, and launching world-class consumer products. They’ve constantly had issues around security and poor product execution. Their company account and their founder’s account seem to only tweet about Bitcoin. I don’t think they understand, appreciate, or value the power of DeFi. It’s unlikely they’ll be leveraging it any time soon. All of these reasons are why I don’t see them as a serious threat to Genesis Block.
However, because of their strong institutional offering, I hope that Genesis Block will ultimately have a very collaborative and productive partnership with them. Assuming they figure out their security woes, we could park some of our funds with BlockFi (just as we will with Genesis Capital and others). I think what’s likely to happen is that we’ll corner the consumer market and we’ll work closely with BlockFi on the institutional side.
I’ve been hard on BlockFi because I care. I think they have a great opportunity at helping elevate the entire industry in a positive way. But they have a lot of issues they need to work through. I really don’t want to see users lose millions of dollars in a security breach. It could set back the entire industry. But if they do things well… a rising tide lifts all boats.

Honorable Mentions

Celsius (ICO Drops) raised $50M in an ICO, and is led by serial entrepreneur Alex Mashinsky. I’ve met him, he’s a nice guy. Similar to Binance, their biggest Achilles heel could be their own token. There are also a lot of unanswered questions about where their deposits go. They don’t have a record of great transparency. They recently did a public crowdraise which is a little odd given their large ICO as well as their supposed $1B in deposits. Are they running out of money, as some suggest? Unclear. One of their biggest blindspots right now is that Mashinsky does not understand the power of DeFi. He is frequently openly criticizing it.
Nexo (ICO Drops) is another similar service. They are European-based, trying to launch their own card (though they’ve been saying this forever and they still haven’t shipped it), and have a history in the payments/fintech space. Because they haven’t penetrated the US — which is a much harder regulatory nut to crack — they are unlikely to be as competitive as BlockFi. There were also allegations that Nexo was spreading FUD about Chainlink while simultaneously partnering with them. Did Nexo take out a short position and start spreading rumors? Never a dull moment in crypto.
Other players in the lending & borrowing space include Unchained Capital, Cred (ICO Drops), and Salt (ICO Drops).

https://preview.redd.it/9ts6m0qw6zh51.png?width=1056&format=png&auto=webp&s=dd8d368c1aa39994c6bc5e4baec10678d3bbba2d

Wrap Up

While many companies in this category seem to be slowly adding more financial services, I don’t believe any of them are focused on the broader consumer market like we are. To use services like BlockFi, Nexo, or Celsius, users need to be onboarded and educated on how crypto works. At Genesis Block, we don’t believe that’s the winning approach. We think blockchain complexity should be abstracted away from the end-user. We did an entire series about this, Spreading Crypto.
For many of these services, there is additional friction due to ICO tokens that are forcefully integrated into the product (see NEXO token or CEL Token). None of these services have true banking functionality or integration with traditional finance —for example, easy offramp or spending methods like debit cards. None of them are taking DeFi seriously — they are leveraging crypto for only the asset class, not the underlying technology around financial protocols.
So are these companies potential competitors to Genesis Block? For the crypto crowd, yes. For the mass market, no. None of these companies are capable of reaching the billions of people around the world that we hope to reach at Genesis Block.
------
Other Ways to Consume Today's Episode:
Follow our social channels: https://genesisblock.com/follow/
Download the app. We're a digital bank that's powered by crypto: https://genesisblock.com/download
submitted by mickhagen to genesisblockhq [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Top-5 Ways To Buy Bitcoin Instantly

The choice of the optimal ways to buy Bitcoin depends on three factors: how much information you want to disclose, what is the amount of the transaction and what level of security you require. However, it is almost impossible to comply with all 3 factors. So, what is the best way to buy Bitcoin?

1. Stock exchange

The best way to buy crypto is to use an exchange (Binance, Coinbase Pro, Huobi Global), where one can sell and buy digital currency from other investors. The price is set manually. In this case, the commission charged by the intermediary will not exceed 1%. The exchange provides anonymity since you don’t need to provide your ID in most exchanges. There are several options for transactions:
If you want to know how to begin investing in Bitcoin, start studying stock exchanges.

Pros:

Cons:

2. Exchanger

A crypto exchanger (Localbitcoins, Lykke, F-change) allows exchanging fiat or other tokens for BTC according to a fixed rate. It is probably the easiest way to buy crypto. The service adds a commission higher than that on the stock exchange.

Pros:

Cons:

3. ATMs for BTC

ATMs for Bitcoins only enter the market. It is enough to have the necessary amount of cash to be able to exchange it for the equivalent in BTC. Such a transaction is instant and does not require registration or other formalities. There are now over 8500 BTC ATMs around the world.

4. For cash with individuals

A hand-to-hand sale is the most private and most insecure way to buy cryptocurrency. It is lucky if you know reliable miners or crypto businessmen. Rent, salary, taxes – all this requires ordinary money, so they constantly have a need to sell mined or earned cryptocurrency. Pros – maximum anonymity of transactions. Cons – risks from dishonest partners.

5. Telegram bots

Telegram bot is an automatic script based on the search for offers and counteroffers. If someone wants to sell BTC, they send a request to the bot and it looks for a counter offer. As soon as someone sends a request for the purchase of Bitcoin, the bot will complete a transaction between these two users.

Pros:

Cons:

Disclaimer

While talking about the ways to buy Bitcoin, it is important to mention that this article doesn’t provide any advice and directions regarding the investments in particular cryptocurrencies and pursues only informative purposes.
submitted by CoinjoyAssistant to btc [link] [comments]

Crypto-Powered - The Most Promising Use-Cases of Decentralized Finance (DeFi)

Crypto-Powered - The Most Promising Use-Cases of Decentralized Finance (DeFi)
A whirlwind tour of Defi, paying close attention to protocols that we’re leveraging at Genesis Block.
https://reddit.com/link/hrrt21/video/cvjh5rrh12b51/player
This is the third post of Crypto-Powered — a new series that examines what it means for Genesis Block to be a digital bank that’s powered by crypto, blockchain, and decentralized protocols.
Last week we explored how building on legacy finance is a fool’s errand. The future of money belongs to those who build with crypto and blockchain at their core. We also started down the crypto rabbit hole, introducing Bitcoin, Ethereum, and DeFi (decentralized finance). That post is required reading if you hope to glean any value from the rest of this series.
97% of all activity on Ethereum in the last quarter has been DeFi-related. The total value sitting inside DeFi protocols is roughly $2B — double what it was a month ago. The explosive growth cannot be ignored. All signs suggest that Ethereum & DeFi are a Match Made in Heaven, and both on their way to finding strong product/market fit.
So in this post, we’re doing a whirlwind tour of DeFi. We look at specific examples and use-cases already in the wild and seeing strong growth. And we pay close attention to protocols that Genesis Block is integrating with. Alright, let’s dive in.

Stablecoins

Stablecoins are exactly what they sound like: cryptocurrencies that are stable. They are not meant to be volatile (like Bitcoin). These assets attempt to peg their price to some external reference (eg. USD or Gold). A non-volatile crypto asset can be incredibly useful for things like merchant payments, cross-border transfers, or storing wealth — becoming your own bank but without the stress of constant price volatility.
There are major governments and central banks that are experimenting with or soon launching their own stablecoins like China with their digital yuan and the US Federal Reserve with their digital dollar. There are also major corporations working in this area like JP Morgan with their JPM Coin, and of course Facebook with their Libra Project.
Stablecoin activity has grown 800% in the last year, with $290B of transaction volume (funds moving on-chain).
The most popular USD-pegged stablecoins include:
  1. Tether ($10B): It’s especially popular in Asia. It’s backed by USD in a bank account. But given their lack of transparency and past controversies, they generally aren’t trusted as much in the West.
  2. USDC ($1B): This is the most reputable USD-backed stablecoin, at least in the West. It was created by Coinbase & Circle, both well-regarded crypto companies. They’ve been very open and transparent with their audits and bank records.
  3. DAI ($189M): This is backed by other crypto assets — not USD in a bank account. This was arguably the first true DeFi protocol. The big benefit is that it’s more decentralized — it’s not controlled by any single organization. The downside is that the assets backing it can be volatile crypto assets (though it has mechanisms in place to mitigate that risk).
Other notable USD-backed stablecoins include PAX, TrueUSD, Binance USD, and Gemini Dollar.
tablecoins are playing an increasingly important role in the world of DeFi. In a way, they serve as common pipes & bridges between the various protocols.
https://preview.redd.it/v9ki2qro12b51.png?width=700&format=png&auto=webp&s=dbf591b122fc4b3d83b381389145b88e2505b51d

Lending & Borrowing

Three of the top five DeFi protocols relate to lending & borrowing. These popular lending protocols look very similar to traditional money markets. Users who want to earn interest/yield can deposit (lend) their funds into a pool of liquidity. Because it behaves similarly to traditional money markets, their funds are not locked, they can withdraw at any time. It’s highly liquid.
Borrowers can tap into this pool of liquidity and take out loans. Interest rates depend on the utilization rate of the pool — how much of the deposits in the pool have already been borrowed. Supply & demand. Thus, interest rates are variable and borrowers can pay their loans back at any time.
So, who decides how much a borrower can take? What’s the process like? Are there credit checks? How is credit-worthiness determined?
These protocols are decentralized, borderless, permissionless. The people participating in these markets are from all over the world. There is no simple way to verify identity or check credit history. So none of that happens.
Credit-worthiness is determined simply by how much crypto collateral the borrower puts into the protocol. For example, if a user wants to borrow $5k of USDC, then they’ll need to deposit $10k of BTC or ETH. The exact amount of collateral depends on the rules of the protocol — usually the more liquid the collateral asset, the more borrowing power the user can receive.
The most prominent lending protocols include Compound, Aave, Maker, and Atomic Loans. Recently, Compound has seen meteoric growth with the introduction of their COMP token — a token used to incentivize and reward participants of the protocol. There’s almost $1B in outstanding debt in the Compound protocol. Mainframe is also working on an exciting protocol in this area and the latest iteration of their white paper should be coming out soon.
There is very little economic risk to these protocols because all loans are overcollateralized.
I repeat, all loans are overcollateralized. If the value of the collateral depreciates significantly due to price volatility, there are sophisticated liquidation systems to ensure the loan always gets paid back.
https://preview.redd.it/rru5fykv12b51.png?width=700&format=png&auto=webp&s=620679dd84fca098a042051c7e7e1697be8dd259

Investments

Buying, selling, and trading crypto assets is certainly one form of investing (though not for the faint of heart). But there are now DeFi protocols to facilitate making and managing traditional-style investments.
Through DeFi, you can invest in Gold. You can invest in stocks like Amazon and Apple. You can short Tesla. You can access the S&P 500. This is done through crypto-based synthetics — which gives users exposure to assets without needing to hold or own the underlying asset. This is all possible with protocols like UMA, Synthetix, or Market protocol.
Maybe your style of investing is more passive. With PoolTogether , you can participate in a no-loss lottery.
Maybe you’re an advanced trader and want to trade options or futures. You can do that with DeFi protocols like Convexity, Futureswap, and dYdX. Maybe you live on the wild side and trade on margin or leverage, you can do that with protocols like Fulcrum, Nuo, and DDEX. Or maybe you’re a degenerate gambler and want to bet against Trump in the upcoming election, you can do that on Augur.
And there are plenty of DeFi protocols to help with crypto investing. You could use Set Protocol if you need automated trading strategies. You could use Melonport if you’re an asset manager. You could use Balancer to automatically rebalance your portfolio.
With as little as $1, people all over the world can have access to the same investment opportunities and tools that used to be reserved for only the wealthy, or those lucky enough to be born in the right country.
You can start to imagine how services like Etrade, TD Ameritrade, Schwab, and even Robinhood could be massively disrupted by a crypto-native company that builds with these types of protocols at their foundation.
https://preview.redd.it/agco8msx12b51.png?width=700&format=png&auto=webp&s=3bbb595f9ecc84758d276dbf82bc5ddd9e329ff8

Insurance

As mentioned in our previous post, there are near-infinite applications one can build on Ethereum. As a result, sometimes the code doesn’t work as expected. Bugs get through, it breaks. We’re still early in our industry. The tools, frameworks, and best practices are all still being established. Things can go wrong.
Sometimes the application just gets in a weird or bad state where funds can’t be recovered — like with what happened with Parity where $280M got frozen (yes, I lost some money in that). Sometimes, there are hackers who discover a vulnerability in the code and maliciously steal funds — like how dForce lost $25M a few months ago, or how The DAO lost $50M a few years ago. And sometimes the system works as designed, but the economic model behind it is flawed, so a clever user takes advantage of the system— like what recently happened with Balancer where they lost $500k.
There are a lot of risks when interacting with smart contracts and decentralized applications — especially for ones that haven’t stood the test of time. This is why insurance is such an important development in DeFi.
Insurance will be an essential component in helping this technology reach the masses.
Two protocols that are leading the way on DeFi insurance are Nexus Mutual and Opyn. Though they are both still just getting started, many people are already using them. And we’re excited to start working with them at Genesis Block.
https://preview.redd.it/wf1xvq3z12b51.png?width=700&format=png&auto=webp&s=70db1e9587f57d0c470a4f9f4523c216929e1876

Exchanges & Liquidity

Decentralized Exchanges (DEX) were one of the first and most developed categories in DeFi. A DEX allows a user to easily exchange one crypto asset for another crypto asset — but without needing to sign up for an account, verify identity, etc. It’s all via decentralized protocols.
Within the first 5 months of 2020, the top 7 DEX already achieved the 2019 trading volume. That was $2.5B. DeFi is fueling a lot of this growth.
https://preview.redd.it/1dwvq4e022b51.png?width=700&format=png&auto=webp&s=97a3d756f60239cd147031eb95fc2a981db55943
There are many different flavors of DEX. Some of the early ones included 0x, IDEX, and EtherDelta — all of which had a traditional order book model where buyers are matched with sellers.
Another flavor is the pooled liquidity approach where the price is determined algorithmically based on how much liquidity there is and how much the user wants to buy. This is known as an AMM (Automated Market Maker) — Uniswap and Bancor were early leaders here. Though lately, Balancer has seen incredible growth due mostly to their strong incentives for participation — similar to Compound.
There are some DEXs that are more specialized — for example, Curve and mStable focus mostly only stablecoins. Because of the proliferation of these decentralized exchanges, there are now aggregators that combine and connect the liquidity of many sources. Those include Kyber, Totle, 1Inch, and Dex.ag.
These decentralized exchanges are becoming more and more connected to DeFi because they provide an opportunity for yield and earning interest.
Users can earn passive income by supplying liquidity to these markets. It usually comes in the form of sharing transaction fee revenue (Uniswap) or token rewards (Balancer).
https://preview.redd.it/wrug6lg222b51.png?width=700&format=png&auto=webp&s=9c47a3f2e01426ca87d84b92c1e914db39ff773f

Payments

As it relates to making payments, much of the world is still stuck on plastic cards. We’re grateful to partner with Visa and launch the Genesis Block debit card… but we still don’t believe that's the future of payments. We see that as an important bridge between the past (legacy finance) and the future (crypto).
Our first post in this series shared more on why legacy finance is broken. We talked about the countless unnecessary middle-men on every card swipe (merchant, acquiring bank, processor, card network, issuing bank). We talked about the slow settlement times.
The future of payments will be much better. Yes, it’ll be from a mobile phone and the user experience will be similar to ApplePay (NFC) or WePay (QR Code).
But more importantly, the underlying assets being moved/exchanged will all be crypto — digital, permissionless, and open source.
Someone making a payment at the grocery store check-out line will be able to open up Genesis Block, use contactless tech or scan a QR code, and instantly pay for their goods. All using crypto. Likely a stablecoin. Settlement will be instant. All the middlemen getting their pound of flesh will be disintermediated. The merchant can make more and the user can spend less. Blockchain FTW!
Now let’s talk about a few projects working in this area. The xDai Burner Wallet experience was incredible at the ETHDenver event a few years ago, but that speed came at the expense of full decentralization (can it be censored or shut down?). Of course, Facebook’s Libra wants to become the new standard for global payments, but many are afraid to give Facebook that much control (newsflash: it isn’t very decentralized).
Bitcoin is decentralized… but it’s slow and volatile. There are strong projects like Lightning Network (Zap example) that are still trying to make it happen. Projects like Connext and OmiseGo are trying to help bring payments to Ethereum. The Flexa project is leveraging the gift card rails, which is a nice hack to leverage existing pipes. And if ETH 2.0 is as fast as they say it will be, then the future of payments could just be a stablecoin like DAI (a token on Ethereum).
In a way, being able to spend crypto on daily expenses is the holy grail of use-cases. It’s still early. It hasn’t yet been solved. But once we achieve this, then we can ultimately and finally say goodbye to the legacy banking & finance world. Employees can be paid in crypto. Employees can spend in crypto. It changes everything.
Legacy finance is hanging on by a thread, and it’s this use-case that they are still clinging to. Once solved, DeFi domination will be complete.
https://preview.redd.it/svft1ce422b51.png?width=700&format=png&auto=webp&s=9a6afc9e9339a3fec29ee2ae743c07c3042ea4ce

Impact on Genesis Block

At Genesis Block, we’re excited to leverage these protocols and take this incredible technology to the world. Many of these protocols are already deeply integrated with our product. In fact, many are essential. The masses won’t know (or care about) what Tether, USDC, or DAI is. They think in dollars, euros, pounds and pesos. So while the user sees their local currency in the app, the underlying technology is all leveraging stablecoins. It’s all on “crypto rails.”
https://preview.redd.it/jajzttr622b51.png?width=700&format=png&auto=webp&s=fcf55cea1216a1d2fcc3bf327858b009965f9bf8
When users deposit assets into their Genesis Block account, they expect to earn interest. They expect that money to grow. We leverage many of these low-risk lending/exchange DeFi protocols. We lend into decentralized money markets like Compound — where all loans are overcollateralized. Or we supply liquidity to AMM exchanges like Balancer. This allows us to earn interest and generate yield for our depositors. We’re the experts so our users don’t need to be.
We haven’t yet integrated with any of the insurance or investment protocols — but we certainly plan on it. Our infrastructure is built with blockchain technology at the heart and our system is extensible — we’re ready to add assets and protocols when we feel they are ready, safe, secure, and stable. Many of these protocols are still in the experimental phase. It’s still early.
At Genesis Block we’re excited to continue to be at the frontlines of this incredible, innovative, technological revolution called DeFi.
---
None of these powerful DeFi protocols will be replacing Robinhood, SoFi, or Venmo anytime soon. They never will. They aren’t meant to! We’ve discussed this before, these are low-level protocols that need killer applications, like Genesis Block.
So now that we’ve gone a little deeper down the rabbit hole and we’ve done this whirlwind tour of DeFi, the natural next question is: why?
Why does any of it matter?
Most of these financial services that DeFi offers already exist in the real world. So why does it need to be on a blockchain? Why does it need to be decentralized? What new value is unlocked? Next post, we answer these important questions.
To look at more projects in DeFi, check out DeFi Prime, DeFi Pulse, or Consensys.
------
Other Ways to Consume Today's Episode:
Follow our social channels:https://genesisblock.com/follow/
Download the app. We're a digital bank that's powered by crypto:https://genesisblock.com/download
submitted by mickhagen to genesisblockhq [link] [comments]

What's Happening At Dash? | Continually Updated News & Announcements Thread

Welcome to dashpay!
If you are new to Dash, we encourage you to check out our wiki, where the Dash project is explained from the ground up with many links to valuable information resources. Also check out the menu bar on top and the sidebar to the right. We have very active Discord and Telegram channels where the community is happy to answer any and all newcomer questions.

Purpose of this post

This post is directed towards community members who wish to rapidly access information on current developments surrounding the Dash cryptocurrency.
Lately we've noticed how the pace of events picked up significantly within the Dash project due to many years of hard work coming together and pieces falling into place ("Evolution" is finally here. It's called Dash Platform). For the purpose of keeping these many pieces of information together, however, singular Reddit submissions are insufficient. Thus we decided to maintain a pinned thread collecting blog posts, interviews, articles, podcasts, videos & announcements. Check back regularly, as this thread will always feature the latest news around Dash, while also serving as a mid-term archive for important announcements and developments.
Journalists looking for news and contact opportunities wrt Dash, please bookmark:

Dash Press Room

"At Dash Press Room you will find the latest press releases, media materials and product updates on Dash - Digital Cash."

Dash Platform Video Series (formerly known as "Evolution") with Amanda B. Johnson

  1. Dash is Becoming a Cloud | Dash Platform #1
  2. What is Dash Drive? | Dash Platform #2
  3. What is Dash's Decentralized API? (DAPI) | Dash Platform #3
  4. Usernames & Dash Platform Name Service (DPNS) | Dash Platform #4
  5. What is Dash Platform Protocol? (DPP) | Dash Platform #5

Dash Core Group News

(last updated: Oct 30th, 2020)

Dash Newsroom with Mark Mason & Dash Talk with Amanda B. Johnson

(last updated: Oct 30th, 2020)

Development news

(last updated: Oct 30th, 2020)

Adoption, Partnership, Business Development, General News

(last updated: Oct 30th, 2020)
submitted by Basilpop to dashpay [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

BTC TRADING FOR BEGINNERS  Cryptocurrency Exchange w ... Watch this Bitcoin Pump VERY Carefully: Here’s Why Bitcoin Btc Binance Bitcoin WILL BE World Currency  Get Your Crypto Off ... BREAKING: MASSIVE Things are Happening with Cryptocurrency in 2020  China Digital Currency Trial BITCOIN’S CRASH PATTERN: How Long?!

As China is actively testing its digital yuan, Russia is now planning to build and test a central bank digital currency, the digital ruble. Meanwhile, the Bank of Russia has proposed limiting the ... Read articles about cryptocurrency. There is a list of projects and technologies which used in crypto community. Visit BitcoinWiki! The purchase and sale of bitcoin, as well as the bitcoin exchange, offers the Baksman.org exchange service. The exchanger is provided with large reserves and provides a high speed of execution of applications. Binance’s certainty is that regardless of what will happen, Bitcoin is here to stay, all the more so at this time when the Covid 19 pandemic has revolutionized the world economy. Binance says there’s a need for a currency that resists censorship, without controls, without borders and that is set not to devalue itself. Trade on the Binance Decentralized Exchange today! Binance Smart Chain. Bitcoin, often described as a cryptocurrency, a virtual currency or a digital currency – is a type of money that is completely virtual. It’s like an online version of cash. You can use it to buy products and services, but not many shops accept Bitcoin yet and some countries have banned it altogether. Binance users can now use dollars, credit cards, and debit cards in some regions and with some card providers. If you can’t use dollars on Binance, consider signing up for Coinbase, buying Bitcoin or Ether there, and then sending your Bitcoin or Ether to Binance to trade alts. UPDATE: You can now use a credit card to buy crypto on Binance. This means that crypto exchanges are obliged to offer BTC trading pairs ahead of any other pairing.This reserve status combined with the widespread availability of trading pairs gives Bitcoin a special status as a store of value in the crypto-currency ecosystem; trading between two alternative cryptocurrencies will often require Bitcoin as a bridge currency to facilitate the exchange. In ... Binance is the no.1 global crypto-currency exchange situated all over the world. 3. Coinbase **Rating: 4.1 out of 5 Stars **Reviews: 50. Coinbase is a digital currency wallet and platform where ... Comparisons Digital versus virtual currency. According to the European Central Bank’s “Virtual currency schemes – a further analysis” report of February 2015, virtual currency is a digital representation of value, not issued by a central bank, credit institution or e-money institution, which, in some circumstances, can be used as an alternative to money.

[index] [8723] [9053] [20304] [10034] [8897] [5466] [14833] [15491] [14091] [5956]

BTC TRADING FOR BEGINNERS Cryptocurrency Exchange w ...

Close. This video is unavailable. This market trading analysis applies to various exchanges, including Bitmex and Binance. Tackling questions like if Bitcoin can reach 20k again and if we will be seeing a crypto currency market ... This market trading analysis applies to various exchanges, including Bitmex and Binance. Tackling questions like if Bitcoin can reach 20k again and if we will be seeing a crypto currency market ... https://www.binance.com/en/register?ref=12327366 ref link or ref number 12327366 future 125x %10 kickback commission. bitcoin and 200+ altcoin. using bnb to ... This video was the old version of PDAX I ENCOURAGE YOU TO WATCH MY LATEST VIDEO ABOUT PDAX: https://www.youtube.com/playlist?list=PLzKnWOuYT-c9L4vVmrQk80oh1F... This just in: McDonald’s, Starbucks and Subway are the three American companies, among 19 companies, participating in China's digital currency trial in 2020. Plus, other Bitcoin and crypto news ...

#